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1 Introduction

Energy-saving solar greenhouses (ESG) are widely used the northern regions of
China. However, challenges remain for high-quality winter production of heat-
loving crops like tomatoes.

» Inconsistent product quality
* Mechanized cultivation
» Automated cultivation

* Precision-controlled cultivation

Photograph of the Liaoshen-type ESG (a), and
the Virtual Solar Greenhouse along with the
Tomatoes Cultivated Inside (b).



1 Introduction

To optimize the light environment in ESG, research must focus on two key aspects:

Greenhouse Structure Crop Canopy Configuration
(Designing the optimal shape and (Developing effective planting strategies
configuration of the greenhouse) \ / and plant architecture)

Light and temperature on each leaf within the canopy

!

Distribution of photosynthesis, dry matter accumulation and transformation rate.

!

Yield




1.Introduction

2.The ESG and Tomato Canopy Microenvironment Model
3.Simulation and Optimization of the Shape Structure of the ESG
4.Light-Temperature Environment in ESG and Tomato Plants
5.Tomato Plants Photosynthesis in ESG

6.ldeal Canopy Structure of Tomatoes in ESG

7.Summary and Outlook




2.1 Collection of Structural and Physical Parameters of the Experimental Greenhouse and Tomatoes

Determination of Microenvironment and Architectural Parameters of the Second-generation Energy-saving Solar

Greenhouses

Determination of Morphological and Physical Parameters of Tomatoes

(a)

Im 2m 2m
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Empty greenhouse A—— @ Solar radiation monitoring points (A-H)

Cropped greenhouse B—— @ Temperature monitoring

<> Humidity&Wind speed monitoring

Schematic Diagram of the Positions of All Monitoring
Points in the Empty Greenhouse (A) and the
Greenhouse with Tomato Cultivation (B).



2.2 Light Environment Simulation Modeling

« Establish a virtual light scene, a simulation model of the solar greenhouse, and virtual tomato crops using GrolMP

platform.
Day : 328
Visualization of the Solar and Sky Models (a): : ﬁ"\* o, e
Photograph of the 3D model of a 30 m-long LSG, Snapshot of the 30x8x4-meter virtual .
including the tomato canopy, with 41 rows, 13 greenhouse model (b).

plants in each row, totaling 533 plants, and a total
of 113,529 tomato leaflets.

F kL% Tomato leaf

incident flux
specular flux

absarbed flux #

Rendered Image of a Sing
in the Tomato Canopy (a); Det

Single Leaf and Wireframe Visualization of the
Underlying Triangular Mesh Structure of the Leaflets

(0).

transmitted flux

Motion Tracking Trajectory of Each Light Ray.




2.2 Light Environment Simulation Modeling.

« Verification of Light Distribution on the Surfaces of Each Component Inside the Solar Greenhouse.

w
[=3
(=]

(a) -=- Measured _ (b) -=- Measured
& — Simulated 4 — Simulated
£ 400 - £ 400
= =
23300 o 23300
5 5
= =
LF) kP
52001 £ 200
= =
E 100 2 100
5 r=09820 £
[=] <
Wl 04 w) 0+
T T T T T 1 T T T T T 1
0 5 10 15 20 25 0 5 10 15 20 25

Time (h)

Average simulated radiation and measured radiation outdoors (a) and inside the greenhouse (b)
during the daytime: 17th Nov, 2014.

Greenhouse height [Bottom -Top] (m)

Greenhouse width [South-North] (m)

2.5+

(a)
— Simulated
® Measured
2.0
1.5
1.04
0.5+
T T T T )
250 300 350 400 450 500 5 10 15 20 25
Radiation (W m™) Greenhouse length [West-East] (m)
()
7 —— Simulated
D
® Measured

6

5 -

4

3 <

2

14

T T T T
250 300 350 400 450

Radiation (W m?)

Greenhouse length [West-East] (m)

300

250

150

100

50

Distribution of solar radiation energy inside the unheated greenhouse at 12 noon for the north wall (Figures (a), (b))
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2.2 Light Environment Simulation Modeling.

« Establishment, Solution of the Energy Balance Equations for Each Part of the Greenhouse and

Model Verification.

The nonlinear differential equations containing 12 unknowns.
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Measured values (a) and simulated values (b) of the average temperatures of the internal air, front roof, north wall,
roof, soil, tomato canopy surface and environment on a typical winter day (17-11-2014).



2.3 Verification of Light-Temperature Coupling Modeling

Verification of Temperature Distribution in Solar Greenhouses and Tomato Populations

North Wall

Temperature (°C)

T T T T T T T T
9:00 10:00  11:00  12:00  13:00 14:00 15:00  16:00 9:00  10:00  11:00  12:00 13:00 14:00 15:00 16:00
Time (h) Time (h)

Ground

Data points of measured (a) and simulated (b) canopy temperature values, as shown in Figure 2, I-K (XZ
plane) and L-M (YZ plane), on a typical winter day (17-11-2014) in the planting greenhouse. The
relatively low values shown in some of the measured on-site data might be due to certain deviations
caused by environmental factors such as wind, plant movement, or the shadow of the front roof structure.

Schematic plot of the greenhouse, showing the positions of all discussed planes, cross sections (XZ plane and YZ
plane), and the plant canopy. Highlighted as green dots and labelled with 1-M are the locations of the reference

points where the temperature was measured within the plant canopy. RMSE (Root Mean Square Error) of canopy temperature point prediction and the correlation
coefficient r between simulation and experiment.
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RMSE 1.1629 1.3791 1.1437 1.1489 0.6474

0.9665 0.8809 0.8983 0.9116 0.9730




2.3 Verification of Light-Temperature Coupling Modeling

Temperature Distribution in Solar Greenhouses and Tomato Populations

The thermographic image simulated within the LSG 3D model at 12 noon on a typical winter day (17-11-2014).
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Simulation of the Photosynthetic Rate of Tomato Leaves in Solar Greenhouses.
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2.4 Simulation of Photosynthetic Rate
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Images of simulated individual adult tomato plants used in the 3D canopy model,
including leaf grading: top (levels 15 - 21), upper-middle (levels 10 - 15), lower-
middle (levels 5 - 10), bottom (levels 1 - 5), the number of leaflets in each grade, the
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2.5 Simulation and Verification of Photosynthetic Rate

Verification of the Simulation Model for the Photosynthetic Rate of Tomato Leaves in Solar Greenhouses.
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represents a one-to-one relationship.
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3.1 Simulation of the Structure of Solar Greenhouses

Classification of the Structures of Energy-saving Solar Greenhouses.

Divide the solar greenhouse into two parts by the

cross-section:
*The front half (A- B - C).
*Therear half (B-D - E - C).

Cross-sectional views of the front part (A - B - C) and
the rear part (B - D - E - C) of the experimental
greenhouse, corresponding to the monitoring points of
energy flux, radiation, and temperature at different parts
of the solar greenhouse. AB represents the width of the
front part; BC represents the ridge height; DE represents
the height of the north wall; and BD represents the
horizontal projection of the rear roof.

Solar radiation (R)
vV W. Thermal radiation (Q)
@ Radiation monitoring points

portion

-«— (Convection (Q°)
mmp Conduction (Q°")

~«—— Latent heat (Q")

~<—— Infiltration (Q™)
©® Temperature monitoring points

11



3.1 Simulation of the Structure of Solar Greenhouses

Simulation of the Intermediate Difference in the Front Structure of Energy-saving Solar Greenhouses:
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The bilinear fitting process of the front roof shape model front shape 4_6 under the specific
conditions of 40% on the X-axis and 60% on the Y-axis. The upper part of the figure shows the
3D spatial changes in each interpolation step. The two-dimensional graphics below are the
curves involved in the interpolation steps of the example front shape 4_6.
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Simulation diagrams of the intermediate difference situations of the front half shapes of four xZ+y2=1 v =x y = (x—1)%+1 y=x

extreme greenhouses. The four corners of the graph correspond to the four extreme shape
situations respectively. 1 2



3.1 Simulation of the Structure of Solar Greenhouses

Simulation of the Intermediate Difference of Parameters in the Front and Rear Parts of Energy-saving

Solar Greenhouses: (Front and Rear Structure Parameter Models)

(a)

S
S

The front structure of the solar greenhouse is a combination
of the front morphological structure model and the front
s parameter model.

-
= =

=

Front with (m)
= = w =) ~ * &
Ridge height (m)

Front portion

[T R SV

k front portion (X_Y) = (front width (x_y), ridge height (x_y)) X
6 front shape model (X_y)
: The rear structure of the solar greenhouse is the rear

parameter model.

Back portion

back portion (X_Y) = north roof projection (x_y),
north wall (x_y)

4 6 2
Shape x Shape x

The size model interpolations of front width (AB) (a) and ridge height (BC) (b) for each shape
configuration of the four greenhouse front portion extrema. Interpolations of north roof projection
(BD) (c) and north wall height (DE) (d) for each shape configuration of the greenhouse back
portion corresponding with each specific front portion (X_Y). 13



3.1 Simulation of the Structure of Solar Greenhouses

Simulation of the Optimal Greenhouse Structure:

Atotal of 121 (11 x 11) different front greenhouse structures.
Atotal of 121 (11 x 11) different rear greenhouse structures.

Sum up to 14,641 (121 x 121) greenhouse structures were simulated in this study.

40 - (a) = Tz,—]\'feasured 50 - (b) T.-Measured ——T _-simulated
—— T-Simulated T,-Measured ——T -Simulated
o —+— Optimal shape for temperature performance - ) T-Measured ——T -Simulated
30 - f Yy, = Optimal shaps for planting A T.-Measured —T -Simulated Root Mean Square Error (RMSE) between the measured values and the simulated values of
= \a Outdoor measurement 401

temperature prediction by the heat balance expansion module and the correlation coefficient (r)

204 — between the simulated values and the measured values.

¥ L 30

2 Py
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= 0 =

— 0.9680 0.9203 0.9638 0.9588 0.9592

-10 4

Time (hour)

Time (hour)

Temperature verification (measured values and simulated values) of the heat balance module of the greenhouse 3D simulation model, including
the verification of the indoor temperature of the experimental greenhouse (Figure a) and the verification of the internal surface temperatures of
the front roof (Tc), the north wall (Tw), the rear slope (Tr), and the soil (Ts) (Figure b). And the temperature performance of the two best energy-
saving solar greenhouses finally obtained from the simulation (the solid triangle represents the greenhouse with the best thermal performance,
and the hollow triangle represents the greenhouse with the best thermal performance for optimizing the planting space).
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3.1 Simulation of the Structure of Solar Greenhouses

Simulation of the Front Structure of Energy-saving Solar Greenhouses:
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Demonstration of the Scene Simulation of the Front Structure of the Greenhouse.
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3.1 Simulation of the Structure of Solar Greenhouses

Simulation of the Rear Structure of Energy-saving Solar Greenhouses:

/—l Scenario 00
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Demonstration of the Scene Simulation of the Rear Structure of the Greenhouse.



3.2 Analysis of the Structure of Solar Greenhouses

Analysis of Light Radiation in the Front Structure of Energy-saving Solar Greenhouses:

Total amount of solar radiation transmitted through the front roof

T e B2 Ei
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The total daily solar radiation (A) and the amount of solar radiation per unit area (B) transmitted through the front roof surface (AC) under each interpolation simulation scenario of the front structure of the
greenhouse. The dashed diagonal lines represent all scenarios of the front structure of the greenhouse where the width of the front part of the greenhouse and the ridge height have the same value (6 m), and are
perpendicular to the direction of the increase in the front width/ridge height (AC/BC) (indicated by the red arrow).
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3.2 Analysis of the Structure of Solar Greenhouses

Analysis of Light Radiation Entering the Front Structure of Solar Greenhouses:

Ground in the Front Part (AB) Ridge Height Plane (BC)
(a) (b)
210 520
208 510
206 500
204 490
[ 7]
202 = 480 f:
200 B -
E: :é“ 470 %
198 % Z 460 8
=
16 i, 450 8
194 -
440
192
430
190
420
188
Shape Shape

Simulation results of the average daily solar radiation intensity per unit area reaching the ground in the front part of the greenhouse (AB, Figure a) and the ridge height plane (BC, Figure b) under each
scenario of the front structure of the greenhouse. The direction of the dashed lines indicates the front structure of the greenhouse where the front width and the ridge height have the same values. The red boxes
at the top and on the right side of each sub-figure represent the front structure of the greenhouse with better light interception performance.
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3.2 Analysis of the Structure of Solar Greenhouses

Analysis of Light Radiation in the Front Structure of Energy - saving Solar Greenhouses:

Select the circular front roof (front portion(0_0)) and the straight front roof (front portion(10_10)) to conduct a detailed
comparison of the solar radiation distribution on the AB surface and the BC surface.

Circle front curve (surface AB) Straight front curve (surface AB)

550

5 5
500
4 4
C)
<=
£3 3 450
P>
2 2

Comparison of the simulated values of the solar
radiation distribution reaching the front structure of the 1
circular greenhouse (front portion(0_0), Figures a, c)
and the front structure of the straight-line greenhouse
(front portion(10_10), Figures b, d) at 12 noon on the
winter solstice. Among them, Figures a and b show the
distribution of light radiation interception on the ground
in the front part of the greenhouse, and Figures c and d
show the distribution of light radiation on the ridge
height plane of the greenhouse.
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3.2 Analysis of the Structure of Solar Greenhouses

Automatic Optimization and Screening of the Structure of Energy - saving Solar Greenhouses:

e
//
7
Uppler tangent . ) 5 A s 6 - Straight lline
Greenhouse Front Scenarios Meeting the Screening
.- 9
Conditions:
8
() The minimum indoor air temperature > 10 °C.
7
(2) The total span of the greenhouse > 8 m )
(3) Ridge height (BC) > the height of the north wall (DE). .
(4) Select the minimum height of the north wall. 1 .
(5) Select the maximum horizontal projection of the rear 3 3
slope. 2 2
1 1
/"'"_ 1 2 3 4 5 6 7 8 9
/! //
The front structure scenarios of the greenhouse that meet the minimum requirements for / /
the optimal greenhouse structure, which are automatically screened out through
programming, are indicated by red dots. The red rectangles represent the 12 selected Circle Lower tangent
front scenarios (used to illustrate the screening process of the rear part of the | | | |

greenhouse, corresponding to Figure 25) as examples.



3.2 Analysis of the Structure of Solar Greenhouses

front portion 7_10 front portion 8 10 front portion 9_10 front portion 10 _10

The Screening Process of the Rear Structure of

S
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Energy-saving Solar Greenhouses:
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(5) Select the maximum horizontal projection of the y
rear slope.
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The intermediate difference scenarios of different greenhouse rears corresponding to each selected greenhouse front scenario (corresponding to the front structure scenarios of the greenhouse boxed by the red rectangles

in Figure 3 - 10) are represented by the simulated values of the daily minimum indoor temperature of the greenhouse. Only the parameter value scenarios with the total width of the greenhouse (AD) > 8 m, the minimum

indoor temperature \(T_{a}*{\min}\) > 10 °C, and the highest minimum temperature at night are selected. The red circles represent the optimal greenhouse rear structure parameters (with the longest horizontal projection 2 1
of the rear slope and the lowest height of the north wall) corresponding to each greenhouse front scenario (X_Y).



3.2 Analysis of the Structure of Solar Greenhouses

Optimization Analysis of the Structure of Energy - saving Solar Greenhouses:

Among the 14,641 greenhouse structure scenarios, the improved greenhouse structures that meet the
conditions through conditional programming will be listed in Table 5.

Table of greenhouse construction parameters that meet the minimum parameter requirements of energy-saving solar greenhouses in Shenyang area corresponding to the
front structure of the greenhouse in Figure 31. The four best shapes for nocturnal thermal performance and better planting conditions are highlighted in pink. The values
highlighted in red indicate the unqualified marginal shapes.

Ridge height Roof projection Wall height

Front portion scenario

(m) (m) (m)

7_10 4.8 7.2 3 6 7.8
8_10 5.2 6.8 2.8 6 8.0

7.8, 8.9, 9_10 5.6 6.4 2.4 6 8.0

7.7, 8.8, 9.9, 10_10 6 6 2.0 5 8.0
6.5, 7.6, 8.7, 9.8, 109 6.4 5.6 1.6 5 8.0
53,664, 75, 86,97, 108 6.8 5.2 1.2 5 8.0
6.3, 7.4, 85, 9.6, 10_7 7.2 4.8 0.8 4 8.0
95, 106 7.6 4.4 0.4 4 8.0

10 5 8 4 0 4 8.0

10_4 8.4 3.6 0 3.8 8.4

10_3 8.8 3.2 0 4.2 8.8

10 2 9.2 2.8 0 4.7 9.2



3.2 Analysis of the Structure of Solar Greenhouses

Optimized and Improved Structures of Energy-saving Solar Greenhouses:

y = —0.8344x% + 1.7071x + 0.1074 R%=0.996

(@) (b)

DE=5m DE=5m

y=-0.8344x+1.7071x+0.1074

y =0.9998x + 0.0331

AB=68m BD=12m AB=6.8m BD=12m

DE=5m DE=5m

y =-0.6475x% + 1.5532x + 0.0791 y =-0.4389x* + 1.3733x + 0.0549
A B D A B D

AB=6.4m BD=16m AB=6m BD=2m

Simulated sectional views of the improved solar
greenhouse structure with better nocturnal temperature
performance in Shenyang area (a), and the three improved
greenhouses with larger planting spaces (b, c, d), along with
the polynomial equations of their corresponding front
greenhouse morphological models.
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3.2 Analysis of the Structure of Solar Greenhouses

Analysis of the Simulated Values of Structural Parameters of Energy-saving Solar Greenhouses:

(a)

0.5
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Figure 29. Results of

principal component
analysis on the light and
thermal performance of

energy-saving solar
greenhouses with respect
to the building structural

parameter indicators.
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4.1 Simulation Analysis of the Light Environment

Simulation Analysis of Light Distribution in Energy-saving Solar Greenhouses:

Light distribution on the surface of the rear
wall (upper part in Figure) and the soil
surface (lower part in Figure) of the solar
greenhouse.

Schematic diagrams of the distribution patterns of
solar radiation energy on the north wall (a) and the
ground (b) in the tomato greenhouse at 9:00 am, 12:00
noon, and 3:00 pm as simulated.
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4.2 Simulation Analysis of the Thermal Environment

Simulation Analysis of Light Distribution in Energy-saving Solar Greenhouses:

Temperature distribution on the surface
of the rear wall (upper part in Figure) and
the soil surface (lower part in Figure) of
the solar greenhouse.

—

o
W

Greenhouse height [Bottom -Top] (m)

~

Figure 31. Schematic diagrams of the temperature

distribution patterns of the north wall (a) and the

ground (b) in the tomato greenhouse at 9:00 am,
12:00 pm (noon), and 3:00 pm as simulated.
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4.3 Analysis of the Microclimate on Tomato Leaf Surfaces

Simulation of the Light and Temperature Distribution in Tomato Populations
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5.1 Simulation of the Distribution of Photosynthetic Rate of Tomato Leaves in Greenhouses

Simulation of the Distribution of Photosynthetic Rate of Tomato Leaves in Solar Greenhouses

The Distribution of Photosynthetic Rate of Tomato Population in ESG at 12:00 noon on a Sunny Day.

Front cover

Simulated cloud map of the distribution of leaf photosynthetic rate of a single row of tomatoes in the center of LSG at 12:00 noon; Photosynthetic
measurement points (I - M --- Leaf level =4, 12, 20, 12, 12)
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5.2 Simulation Analysis of Photosynthetic Rate
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The amount of light intercepted by each leaf layer of a single plant in the middle of the greenhouse at 12:00 noon under sunny and cloudy conditions (a); The average leaf temperature (b); The average net photosynthesis (c) .



5.3 Simulation Analysis of Photosynthetic Limiting Factors
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Comparison of the percentages of each photosynthetic limiting factor at each tomato leaf level at 12:00 noon on sunny and cloudy days.
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6.1 Simulation of Tomato Plant Configuration in Solar Greenhouses

Simulation of Tomato Planting Configuration:

The greenhouse tomato planting is divided into the following two ridge directions:

* North-south ridges
» East-west ridges

Four planting patterns:
« Even planting
* wide-narrow rows
« staggered rows
* incremental rows

Sixteen densities:

1-1.6 m
0.3-0.6 m

* Furrow distance:
* Plant spacing:

Planting pattern 1

Planting pattern 2

Planting pattern 3

Planting pattern 4
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F S

Furrow distance

Plant spacing
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Furrow distance

Im, 1.2m, 1.4m, 1.6m

Plant spacing N

0.3m, 0.4m, 0.5m, 0.6m A

Schematic diagrams of four planting patterns in the NS row direction (a) and the EW row direction (b), namely: even planting
(planting pattern 1), wide-narrow rows (planting pattern 2), staggered rows (planting pattern 3), and incremental rows
(planting pattern 4).



6.1 Simulation of Tomato Plant Configuration in Solar Greenhouses

Comparison of Different Plant Configurations:

Taking the most common ridge spacing of 1 m and plant spacing of 0.3 m as examples, the noon light interception situation of a single plant for the
following 8 plant configurations was simulated:
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The amount of solar radiation intercepted by a single plant at noon under four planting patterns in the north-south direction (above) and the east-west direction (below). Each sphere, height, and color 32
represent the intensity of the solar radiation intercepted by the whole plant, which is the sum of the absorbed radiation by all the leaves and leaflets of the plant.



6.1 Simulation of Tomato Plant Configuration in Solar Greenhouses

Comparison of light interception amount (a, b), leaf temperature (c, d), and photosynthesis (e, f) among the two ridge directions and four planting patterns
as the plant spacing and ridge spacing increase.
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With the increase in plant spacing, the noon solar radiation interception amount (a, b), leaf temperature (c, d), and
photosynthesis (e, f) of the four planting patterns in the NS direction (a, c, e) and the EW direction (b, d, f).
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6.1 Simulation of Tomato Plant Configuration in Solar Greenhouses

Comparison of Different Plant Configurations:

Detailed comparison of
three points of plants (A, B, C)
between the north-south ridge
direction and the east-west
ridge direction in planting
pattern 4 (incremental rows).

With the increase in plant spacing, the noon solar
radiation interception amount (a, b), leaf temperature
(c, d), and photosynthesis (e, f) of the four planting
patterns in the NS direction (a, c, €) and the EW
direction (b, d, f).
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6.1 Simulation of Tomato Plant Configuration in Solar Greenhouses

Comparison of Different E-W orientation
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Conduct a comparison of light radiation
at three leaf levels (4, 11, 18) in different
time periods (9 a.m., 12 p.m., 4 p.m.)
between the north-south ridge direction
and the east-west ridge direction in
planting pattern 4 (incremental rows).
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6.2 Simulation of Tomato Plant Architecture in Solar Greenhouses

Simulation of Different Plant Architecture Structures of Tomato:

8 configurations: 4 at the branch level; 4 at the leaf level. The total leaf area of a single plant remained unchanged for each treatment.

Leaflet elevation

Internode length Leaf azimuth angle

Leaﬂeg curve

R-2cm R-lcm Rem R+1lcm 140° 160° 180°
Leaf elevation angle Leaf length
3 4 1
p
.’
R ;i 0.6xR
C D C
Detailed simulation configurations of the characteristics at the tomato branch level. Each tomato plant was _ Detailed simulation configurations of the characteristics at the tomato leaf level. Each tomato plant was
simulated individually, and there were 5 treatments in each scenario. For each leaf level of the tomato plant simulated individually, and there were 5.treat(nents in each scenario. For each leaf level of the tomato plant in
in each treatment, there was a corresponding visual 3D representation, namely: internode length (R - 2 cm, R each treatment, there was a corresponding visual 3D representation, nar;nely: leaf curvature (-2xZR, 0xZR
-1cm, Rem, R+ 1cm, R + 2 cm), branch azimuth angle (90°, 120°, 140°, 160°, 180°), branch elevation cm, ZR cm, 2xZR, 3xZR), leaf elevation angle (60°, 30°, 0°, -30°, -60°), leaf number/area (0.6xR, 0.8xR,
angle (60°, 30°, 0°, -30°, -60°), and branch length (0.6 x R, 0.8 x R, R, 1.2 x R, 1.6 x R). R, 1.2xR, 1.4xR), and leaf width/length ratio (0.36 xR, 0.64xR, R, 1.44xR, 1.96 xR). LR represents the

reference value of leaf length. ZR is the reference value of the ordinate of leaf curvature.



Comparison of Light Interception and Accumulation at the Leaf Level among Different Plant Types:
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6.2 Simulation of Tomato Plant Architecture in Solar Greenhouses
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The effects of different treatments of branch horizontal shapes on the cumulative light radiation per
plant with the increase of leaf grade. A single plant located in the center of the greenhouse was
simulated to avoid any boundary effects. For example, internode length (a), leaf azimuth (b), leaf
elevation angle (c), and leaf length (d).
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The effects of different treatments of leaf horizontal shapes on the cumulative light radiation per plant
with the increase of leaf level. A single plant located in the center of the greenhouse was simulated. For
example, leaflet area (a), leaflet height (b), leaflet number (c), and leaflet width-to-length ratio (d).
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6.2 Simulation of Tomato Plant Architecture in Solar Greenhouses

The comparison between photosynthetic rate and dry matter of differe
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6.2 Simulation of Tomato Plant Architecture in Solar Greenhouses

Comparison between the ideal plant architecture and the measured reference plant architecture.

The light radiation interception capacity of the canopy has been increased by 20.21%.
A B
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1 1 |
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Internode length Leaf azimuth angle Leaf elevation angle Leaflength Leaflet curve Leaflet elevation Leaflet N/A ratio Leaflet L/W ratio
Reference R 140 © 0° R R 0° R R

Z

Ideal R+2 cm 160 °© 0° 1.2xR 0 60 © 1.4xR 1.96xR

Comparison between the original reference tomato plant type structure and the ideal tomato plant type structure obtained by integrating the optimal values of various plant type parameters
derived from simulation screening.



6.2 Simulation of Tomato Plant Architecture in Solar Greenhouses

Partial Least Squares Path Modeling:

Partial Least Squares Path Modeling (PLS-PM) is a structural equation modeling (SEM) technique. It is mainly used
to analyze the complex causal relationships among multiple variables, especially in the presence of latent variables.
Theoretically speaking, it can be applied to purely simulated data.

Developed by SmartPLS GmbH.

We thus performed PLS-PM on all the simulated physiological version 4.1.00
and morphological data to explore the causal and quantitative

relationships among variables. S m a rt

Next Generation Statistics

4
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6.2 Simulation of Tomato Plant Architecture in Solar Greenhouses

Partial Least Squares Path Modeling:
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Partial Least Squares Path Modeling (PLS-PM) of all the simulated physiological and
morphological data. The simulated variables are represented in rectangular form,
while the characteristics within the large circles and polygons are latent variables

(LV). The numbers above indicate the loadings (the correlations between the latent
variables and their simulated variables) and the path coefficients calculated after
1,000 bootstraps.

Total effects on photosynthesis C Total effects on dry matter
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The total effects of different LV on the PLS-PM output: photosynthesis and yield.
(+) indicates a positive impact, while (-) indicates a negative impact. The
percentages are the proportions of the path weights that contribute to each output.
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1.Introduction

2.The ESG and Tomato Canopy Microenvironment Model
3.Simulation and Optimization of the Shape Structure of the ESG
4.Light-Temperature Environment in ESG and Tomato Plants
5.Tomato Canopy Photosynthesis in ESG

6.ldeal Canopy Structure of Tomatoes in ESG

7.Summary and Outlook




Summary

The following achievements have been made:

1. Optimization of the Structure of the Second-generation ESG in China

2. Simulation of Environmental Factors and Photosynthetic Rate at the Leaf Level of Tomatoes in ESG

3. Comparative Analysis of Canopy Structure Scenarios for Different Planting Configurations
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