
XL language: Introduction

Katarína Smoleňová

FSPM & GroIMP Workshop

PMBDA 2025, Nanchang, China

November 1, 2025



▪ XL: eXtended L-system language

▪ Combines multiple programming paradigms

(ways of structuring code)

▪ Extension of Java

● Imperative & object-oriented

▪ Implements L-systems and graph grammars

● Rule-based

XL modelling language

2



▪ Explicit statements

▪ Code controls execution flow

▪ Tasks performed step-by-step

▪ E.g. photosynthesis calculation

Imperative programming in XL

3



Object-oriented programming in XL

4

Organ

GrowingOrgan

VisibleOrgan

Internode Leaf Fruit

RootSystem

Apex

▪ Code organised around objects 

(with data and behavious)

▪ Supports inheritance

▪ E.g. organ modules

VisibleOrgan

- attributes: absRadiation, assimilates

- methods: calcLight(), calcPhotosynthesis(),

calcDimensions()



▪ Knowledge represented in form of rules; rules define what to do

▪ Rules applied as long as possible: matching & rewriting process

Rule-based programming in XL

5
time

1 2 3 40

A -> F[-B][+B]A

B -> FB A

F[-B][+B]A

F[-FB][+FB] F[-B][B]A

F[-FFB][+FFB] F[-FB][+FB]F[-B][B]A

F[-FFFB][+FFFB] F[-FFB][+FFB]F[-FB][+FB] F[-B][+B]A



▪ RGG - relational growth grammars

allow for the definition of L-system style rewriting 

rules on a graph structure and new type of relations

XL implements relational graph grammars

6

F[-FB][FB] F[-B][B]A



▪ XL rules and Java code can be mixed and nested

Use of imperative code in XL

7

rule-based blocks: [ … ]

imperative blocks: { … }

module A(float len) extends Sphere(0.1);

int time;

protected void init()
[
    { time = 0; }
 
    Axiom ==> A(1);
]

public void run()
[
    {
        time++;
        println("time: " + time);
    }
 
    A(x) ==> F(x) [RU(30) RH(90) A(x*0.8)] [RU(-30) RH(90) A(x*0.8)];
]

// Alternatively:

{

time = 0;

[

Axiom ==> A(1);

]

}

Try this out



Some useful operators and methods

8

Comparison operators:
== // equal to
!=  // not equal to
> // greater than
<  // less than
>= // greater than or equal to 
<= // less than or equal to

Logical operators:
&&  // logical AND
||  // logical OR
!  // logical NOT

Mathematical constants:
Math.PI // the value of pi
Math.E // Euler’s number

Mathemathical functions:
Math.sin(x) // the sine of x (in radians)
Math.cos(x)   // the cosine of x (in radians)
Math.tan(x) // the tangent of x  (in radians)
Math.toDegrees(radians) // converts an angle from radians to degrees
Math.toRadians(deg) // converts an angle from degrees to radians
Math.sqrt(x) // the square root of x
Math.exp(x)  // e raised to the power of x e^x
Math.pow(x, y) // x raised to the power of y x^y
Math.log(x) // the natural logarithm (base e) of x 
Math.abs(x)  // the absolute value of x
Math.min(x, y) // the smaller of two values
Math.max(x, y) // the larger of two values
Math.round(x) // rounds x to the nearest integer



probability(x) - returns 1 with probability x, and 0 with probability 1-x

random(a, b) - generates a uniformly distributed pseudorandom number between a and b

irandom(a, b) - generates a uniformly distributed integral pseudorandom number between a and b

normal(mu, sigma) - generates a normally distributed pseudorandom number with mean mu and 

standard deviation sigma

setSeed(s) - sets a starting value for the pseudorandom number generator (to produce identical 

sequences of pseudorandom numbers)

Math.random() - generates a pseudorandom double number between 0.0 and 1.0

XL functions for pseudorandom numbers 

9



Adding randomness to XL models

10

Try this out



▪ RGG – relational growth grammars - define rules for graph transformations

Essential RGG rule:

left hand side ==> right hand side

   Complete RGG rule (5 parts):

(* context *), left hand side, ( condition ) 

==>

right hand side { imperative code };

RGG rule

11



▪ 3 different types of rules

==> L-system rule

BudT ==> Internode(1) [RU(-30) BudL] [RU(30) BudL] BudT;

 BudL ==> Internode(1) BudL;

::> Execution rule (no changes on the graph structure)

ModuleName ::> { imperative_code; }

i:Internode ::> { i[length] += 0.1; }

i:Internode ::> { i[age]++; }

==>> General graph-rewriting rule

b1:BudL, b2:BudL, ((b1 != b2) && (distance(b1, b2) < 0.5 )) ==>> b1 -c-> b2;

Types of rules

12



13

fspm.discourse.group

wiki.grogra.de


	Slide 1: XL language: Introduction
	Slide 2: XL modelling language
	Slide 3: Imperative programming in XL
	Slide 4: Object-oriented programming in XL
	Slide 5: Rule-based programming in XL
	Slide 6: XL implements relational graph grammars
	Slide 7: Use of imperative code in XL
	Slide 8: Some useful operators and methods
	Slide 9: XL functions for pseudorandom numbers 
	Slide 10: Adding randomness to XL models
	Slide 11: RGG rule
	Slide 12: Types of rules
	Slide 13

