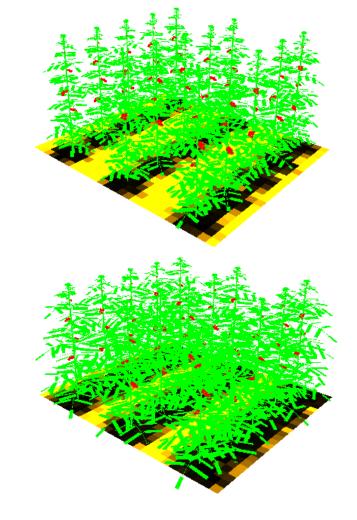

Towards a functional-structural plant (FSP) model

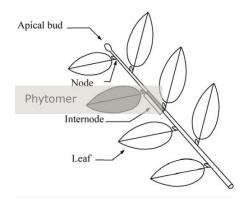
Katarína Smoleňová

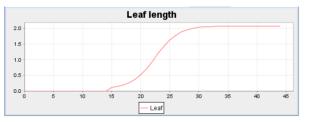
FSPM & GroIMP Workshop PMBDA 2025, Nanchang, China November 1, 2025

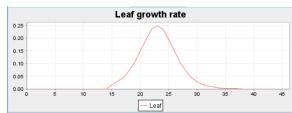


Hands-on example

- Improving our simple tomato model
 - Organ appearance rate
 - Organ extension modelling
 - Light modelling
 - Biomass modelling
 - Plotting simulated outputs

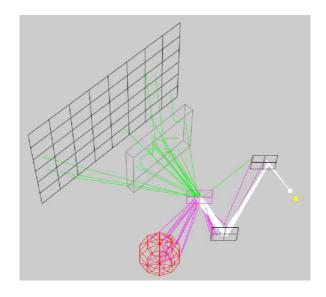

In silico experiments with the model


New functionality


 Phyllochron - time span between the appearance of new phytomers -> more precise timing of development

(acc. Barthélémy & Caraglio, 2007)

 Organ extension – gradual increase in size as a function of age; described by a logistic curve



$$\frac{dW}{dt} = \frac{kW_{\text{max}}e^{(-k(t-t_m))}}{(e^{(-k(t-t_m))}+1)^2}$$

New functionality (cont.)

- Light modelling using a (modified)3D raytracing approach
- Light model calculates how much light is absorbed by each object in the scene
- Material properties of an object (a shader)
 define how much light will be reflected, transmitted,
 and finally absorbed
- Requires a light source in the scene

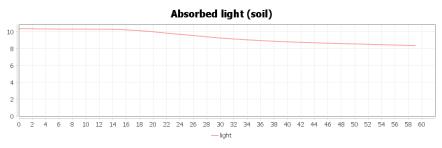
New functionality (cont.)

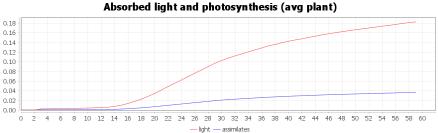
- Biomass production calculated using a photosynthesis model
- Here, we assume a simple linear relationship between biomass and radiation (used often in crop models)
- We will use absorbed radiation

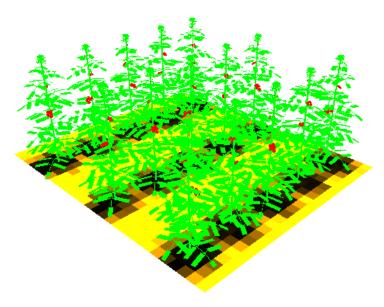
 $Biomass = RUE \times PAR$

RUE – radiation use efficiency

PAR – photosynthetically active radiation




(Hu et al., 2025, COMPAG)



New functionality (cont.)

Determining how much light arrives at the soil

Try yourself

Materials:

```
wiki.grogra.de > Workshops > FSPM and GroIMP tutorials at PMA conference 2025
https://wiki.grogra.de/doku.php?id=workshops:tutorial_pma_25:01_saturday
```

- Model scenarios modify model parameters (in parameters.rgg) related to:
 - Planting density (NR_ROWS, NR_PLANTS, ROW_DIST, PLANT_DIST)
 - Architectural traits: leaf length (MAX_LEAF_LENGTH), leaf angle (LEAF_ANGLE), number of leaflet pairs (NB_LEAFLET_PAIRS), internode length (MAX_INTERNODE_LENGTH)
- Aim: 1) less light arriving at the soil (meaning the canopy absorbed more light)
 - 2) increased average plant biomass

wiki.grogra.de

