
How to model plant architecture in GroIMP

Katarína Smoleňová

FSPM & GroIMP Workshop

PMBDA 2025, Nanchang, China

November 1, 2025

▪ Plant architecture defined by

● The type of individual components making up the

plant (decomposition),

● Their shape, location, and orientation in space

(geometry), and

● How they are related to each other (topology)

▪ Plants develop by the repetition of these individual

components (and/or botanical units) in time and space

● Described by a set of rules

Plants as modular organisms

2

(from Heuret)

(acc. Barthélémy & Caraglio, 2007)

Phytomer

▪ Plant architecture defined by

● The type of individual components making up the

plant (decomposition),

● Their shape, location, and orientation in space

(geometry), and

● How they are related to each other (topology)

▪ Plants develop by the repetition of these individual

components (and/or botanical units) in time and space

● Described by a set of rules

Plants as modular organisms

3

In XL:

▪ Decomposition:

Definition of modules

▪ Geometry:

3D objects & turtle commands

▪ Topology:

Internal property of the graph

(nodes & edges)

Rules:

▪ L-system: ==>

▪ Execution: ::>

▪ General graph rewriting: ==>>

Specifying development with rewriting rules

Axiom: Bud

Rules: Bud ==>

 Internode

[RL(110) Leaf]

 RH(137.51) Bud

;

Modules: Bud, Internode, Leaf, Flower

4

Bud ==>

 Internode Flower

;

time == 6

3D turtle graphics

commands

(initial structure)

Specifying development with rewriting rules

Axiom: Bud

time

1 2 3 4 5 60

Rules: Bud ==>

 Internode

[RL(110) Leaf]

 RH(137.51) Bud

;

Bud ==>

 Internode Flower

;

time == 6

Modules: Bud, Internode, Leaf, Flower

(initial structure)

5

Execution rules

▪ Used to update attribute values of searched organs or execute imperative statements

without changes in the (graph) structure

6

Leaf(length, width) ==>
Leaf(length+0.015, width+0.005)

;

l:Leaf ::> {
l[length] += 0.015;
l[width] += 0.005;

}

l:Leaf ::> {
l[length] :+= 0.015;
l[width] :+= 0.005;

}

deferred assignment

(parallel execution of assignments)

Rewriting (L-system) rule:

Execution rule:

l:Leaf ::> { l.calcPhotosynthesis(); }

Improving geometrical representation

7

flower

leaf

Supported objects in GroIMP

8

Parametric curves & surfacesPrimitives Mesh

How to assign geometry to modules

▪ Derivation from an existing geometric object (Menu: Objects):

module Internode extends Cylinder(1, 0.1);

module Internode(super.length, super.radius) extends Cylinder(length, radius);

module Internode(super.length, float diameter) extends Cylinder(length, diameter/2);

▪ Using instantiation rules:

module Internode(float length, float diameter)

==> Cylinder(length, diameter/2);

9

Inside a rule:

Internode

Internode(1, 0.05)

Internode(1, 0.1)

Internode(1, 0.1)

10

// modules
module Bud extends Sphere(0.03).(setShader(GREEN));

module Internode extends Cylinder(0.2, 0.2).(setShader(GREEN));

module Leaf(double length, double width)
==> leaf(length, width); // leaf is a green parallelogram

module Flower extends Sphere(0.05).(setShader(RED));

// model variables & parameters
int time;
const double LEAF_ANGLE = 110;
const double PHYLLOTAXIS_ANGLE = 137.51;

// axiom (initial structure)
protected void init() [

{ time = 0; }

Axiom ==>
Bud

;
]

Putting it all together in XL

11

// modules
module Bud extends Sphere(0.03).(setShader(GREEN));

module Internode extends Cylinder(0.2, 0.2).(setShader(GREEN));

module Leaf(double length, double width)
==> leaf(length, width); // leaf is a green parallelogram

module Flower extends Sphere(0.05).(setShader(RED));

// model variables & parameters
int time;
const double LEAF_ANGLE = 110;
const double PHYLLOTAXIS_ANGLE = 137.51;

// axiom (initial structure)
protected void init() [

{ time = 0; }

Axiom ==>
Bud

;
]

Putting it all together

public void run() [

// rewriting rule
b:Bud ==>

if (time < 5) (
Internode
[RL(LEAF_ANGLE) Leaf(0.1, 0.1)]
RH(PHYLLOTAXIS_ANGLE) b

) else (
Internode Flower

)
;

// execution rule
l:Leaf ::> {

l[length] :+= 0.01;
l[width] :+= 0.01;

}

{ time :+= 1; }
]

▪ Plant architecture with simplified development

▪ Leaf reconstruction options

12

Model example: Tomato

v
e
g
e
ta

ti
v
e

g
e
n
e
ra

ti
v
e

Model example: Daisy

13

▪ Plant architecture reconstruction

Menu: Panels > Explorers > 3D > Shaders

Shaders: Object > New > Lambert (2 clicks or F2 to rename)

Attribute Editor: Diffuse colour > Surface Maps > Image; Image > From File

Texture mapping

14

Photographs with removed background

(with alpha channel, png file format)

gimp.org

Create a reference in XL:

const ShaderRef leafSh =
shader("leafShader");

Try yourself

▪ Materials:

wiki.grogra.de > Workshops > FSPM and GroIMP tutorials at PMA conference 2025

https://wiki.grogra.de/doku.php?id=workshops:tutorial_pma_25:01_saturday

▪ Simple plant architecture (from this presentation)

-> add branching

▪ Simple tomato plant

-> added branching & different leaf shapes

-> modify to another plant (change internode length, #leaflets, etc.)

▪ Daisy

-> modify parameters/textures to create a different flower/plant

15

https://wiki.grogra.de/doku.php?id=workshops:tutorial_pma_25:01_saturday

16

fspm.discourse.group

wiki.grogra.de

	Slide 1: How to model plant architecture in GroIMP
	Slide 2: Plants as modular organisms
	Slide 3: Plants as modular organisms
	Slide 4: Specifying development with rewriting rules
	Slide 5: Specifying development with rewriting rules
	Slide 6: Execution rules
	Slide 7: Improving geometrical representation
	Slide 8: Supported objects in GroIMP
	Slide 9: How to assign geometry to modules
	Slide 10: Putting it all together in XL
	Slide 11: Putting it all together
	Slide 12: Model example: Tomato
	Slide 13: Model example: Daisy
	Slide 14: Texture mapping
	Slide 15: Try yourself
	Slide 16

