tutorials:grolink-on-kubernetes
Differences
This shows you the differences between two versions of the page.
Both sides previous revisionPrevious revisionNext revision | Previous revision | ||
tutorials:grolink-on-kubernetes [2024/12/02 15:21] – [Linking processes to API servers] tim | tutorials:grolink-on-kubernetes [2024/12/02 15:38] (current) – [Generate input data with SALib] tim | ||
---|---|---|---|
Line 270: | Line 270: | ||
</ | </ | ||
- | '' | + | '' |
Line 286: | Line 286: | ||
Then we can use this list to create a queue long enough to " | Then we can use this list to create a queue long enough to " | ||
<code python> | <code python> | ||
+ | WORKERCOUNT =9 | ||
pods = multiprocessing.Queue() | pods = multiprocessing.Queue() | ||
n = len(links) | n = len(links) | ||
Line 296: | Line 297: | ||
<code python> | <code python> | ||
#initialize each worker | #initialize each worker | ||
- | def init_worker(function, | + | def init_worker(function, |
- | function.cursor = pods.get().openWB(content=open(" | + | function.cursor = queue.get().openWB(content=open(" |
</ | </ | ||
+ | The function.cursor will then later be defined for each worker, by emptying the given queue. | ||
- | ==== Update growth function ==== | ||
- | ==== Run it all ==== | + | ==== The actual function |
+ | The actual growth function is no much different to the one we used above to test our model for the first time. Only that we can use the variable grow.cursor as a workbench because we know already that it will be initialized in that way. And we only get one tuple as an input parameter from the ASlib function, so we split it in the first line: | ||
+ | |||
+ | <code python> | ||
+ | # the actual execution | ||
+ | def grow(val): | ||
+ | lenV, angle = val | ||
+ | results = [] | ||
+ | #overwrite the parameters in the file | ||
+ | grow.cursor.updateFile(" | ||
+ | static float lenV=""" | ||
+ | static float angle=""" | ||
+ | """,' | ||
+ | grow.cursor.compile().run() | ||
+ | for x in range(0, | ||
+ | data=grow.cursor.runRGGFunction(" | ||
+ | results.append(float(data[' | ||
+ | return results | ||
+ | </ | ||
+ | |||
+ | ==== Running and saving ==== | ||
+ | |||
+ | In the final step we initialize a multiprocessing pool using the init_worker function, with the grow function and pods queue as parameters and map this pool on the generated input values. | ||
+ | |||
+ | Finally we can transfrom and save our result in an csv file. | ||
+ | <code python> | ||
+ | # Multi processing | ||
+ | pool = multiprocessing.Pool(processes=WORKERCOUNT, | ||
+ | results = pool.map(grow, | ||
+ | pool.close() | ||
+ | y = np.array(results) | ||
+ | |||
+ | # save result | ||
+ | np.savetxt(" | ||
+ | </ | ||
+ | |||
+ | |||
+ | ==== Running It ==== | ||
+ | |||
+ | After we put this all together and run it as we did above, we can read our csv file through our terminal pod: | ||
+ | <code bash> | ||
+ | kubectl -n grolinktutorial exec terminal-XXXX cat result.csv | ||
+ | </ | ||
+ | |||
+ | For simplicity you can find the last python code here in one file: | ||
+ | <code python> | ||
+ | import numpy as np | ||
+ | from SALib.sample import saltelli | ||
+ | from GroPy import GroPy | ||
+ | import multiprocessing | ||
+ | import kr8s | ||
+ | from kr8s.objects import Pod | ||
+ | |||
+ | WORKERCOUNT =9 | ||
+ | |||
+ | # defining the problem | ||
+ | problem = { | ||
+ | ' | ||
+ | ' | ||
+ | ' | ||
+ | } | ||
+ | param_values = saltelli.sample(problem, | ||
+ | |||
+ | #creating a link for each pod | ||
+ | links=[] | ||
+ | selector = {' | ||
+ | for podS in kr8s.get(" | ||
+ | print(" | ||
+ | links.append(GroPy.GroLink(" | ||
+ | |||
+ | # create an queue to assign pods to workers | ||
+ | pods = multiprocessing.Queue() | ||
+ | n = len(links) | ||
+ | for i in range(0, | ||
+ | pods.put(links[i%n]) | ||
+ | |||
+ | #initialize each worker | ||
+ | def init_worker(function, | ||
+ | function.cursor = pods.get().openWB(content=open(" | ||
+ | |||
+ | # the actual execution | ||
+ | def grow(val): | ||
+ | lenV, angle = val | ||
+ | results = [] | ||
+ | #overwrite the parameters in the file | ||
+ | grow.cursor.updateFile(" | ||
+ | static float lenV=""" | ||
+ | static float angle=""" | ||
+ | """,' | ||
+ | grow.cursor.compile().run() | ||
+ | for x in range(0, | ||
+ | data=grow.cursor.runRGGFunction(" | ||
+ | results.append(float(data[' | ||
+ | return results | ||
+ | | ||
+ | # Multi processing | ||
+ | pool = multiprocessing.Pool(processes=WORKERCOUNT, | ||
+ | results = pool.map(grow, | ||
+ | pool.close() | ||
+ | y = np.array(results) | ||
+ | |||
+ | # save result | ||
+ | np.savetxt(" | ||
+ | |||
+ | </ |
tutorials/grolink-on-kubernetes.1733149289.txt.gz · Last modified: 2024/12/02 15:21 by tim