User Tools

Site Tools


publications:publications

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
publications:publications [2025/01/11 18:22] – [2019] wkurthpublications:publications [2025/10/25 16:51] (current) – [2024] MH
Line 4: Line 4:
  
 ===== Articles ===== ===== Articles =====
 +
 +
 +==== 2025 ====
 +
 +**Heidsieck et al., (2025).** Pointcloud: Implementation of point clouds as graphs in the 3D plant modeling platform GroIMP. Journal of Open Source Software, 10(110), 8062, https://doi.org/10.21105/joss.08062
 +
 +
 +==== 2024 ====
 +
 +**Li WJ, Zhang K, Liu JX, Wu JA, Zhang Y, and Henke M (2024).** Optimizing Daylily Cultivation: Integrating Physiological Modeling and Planting Patterns for Enhanced Yield and Resource Efficiency. Frontiers in Plant Science, 15, https://doi.org/10.3389/fpls.2024.1442485
 +
 +**Patil SM, Henke M, Chandramouli M and Jagarlapudi A (2024).** Die Rolle virtueller Pflanzen in der digitalen Landwirtschaft, Book chapter in: Chaudhary  S, Biradar CM, Divakaran S, Raval MS (eds) "Digitales Ökosystem für Innovationen in der Landwirtschaft", book series “Studen in Big Data 121”, Springer Nature Singapore Pte Ltd., https://doi.org/10.1007/978-981-97-2498-7_8
 +
 +**Zhao D, Xu TY, Henke M, Yang H, Zhang CJ, Cheng JP, Yang GJ (2024).** A method to rapidly construct 3D canopy scenes for maize and their spectral response evaluation, Computers and Electronics in Agriculture, 224, https://doi.org/10.1016/j.compag.2024.109138
 +
 +**Xu LF, He KR, Henke M, Ding WL, Buck-Sorlin GH (2024).** Mixed particle swarm optimization algorithm-based approach to optimize spatial distribution of virtual maize, Computers and Electronics in Agriculture, accepted, https://doi.org/10.1016/j.compag.2024.109159
 +
 +**Xu DM, Henke M, Li YM, Zhang Y, Liu AH, Liu XG and Li TL (2024).** Optimal Design of light Mlicroclimate and Planting Strategy for Chinese Solar Greenhouses Using 3D Light Environment Simulations, Energy, 302, 131805, https://doi.org/10.1016/j.energy.2024.131805
 +
 +**Li YM, Henke M, Zhang DL, Wang CQ, Wei M (2024).** Optimized Tomato Production in Chinese Solar Greenhouses: The Impact of an East–West Orientation and Wide Row Spacing; Agronomy, 14(2), 314, https://doi.org/10.3390/agronomy14020314
 +
 +**Zhang Y, Henke M, Li YM, Xu DM, Liu AH, Liu XG and Li TL (2024).** Estimating the Light Interception and Photosynthesis of Greenhouse-Cultivated Tomato Crops under Different Canopy Configurations. Agronomy, 14(2), 249, https://doi.org/10.3390/agronomy14020249
 +
 +==== 2023 ====
 +
 +**Zhang Y, Li WJ, Han ZP, Zhang K, Liu JW, and Henke M (2023).** A Study on the Three-Dimensional Dynamic Growth Simulation of Daylily Plants Based on Source-Sink Relationships Modeling. Smart Agriculture, 6(2), 140-153, https://doi.org/10.12133/j.smartag.SA202310011; in Chinese with English abstract
 +
 +**Patil SM, Henke M, Chandramouli M and Jagarlapudi A; Role of Virtual Plants in Digital Agriculture (2023).** Book chapter in: Chaudhary  S, Biradar CM, Divakaran S, Raval MS (eds) "Digital Ecosystem for Innovation in Agriculture (DEIA2023)", book series “Studies in Big Data 121”, Springer Nature Singapore Pte Ltd., https://doi.org/10.1007/978-981-99-0577-5_8
  
 ==== 2022 ==== ==== 2022 ====
  
-**Chi F., Streit K., Tavkhelidze A., and W. Kurth (2022).** Reconstruction of phyllotaxis at the example of digitized red mangrove (Rhizophora mangle) and application to light interception simulation. in silico Plants 4 (1): diac002.+**Chi F., Streit K., Tavkhelidze A., and W. Kurth (2022).** Reconstruction of phyllotaxis at the example of digitized red mangrove (Rhizophora mangle) and application to light interception simulation. in silico Plants 4 (1): diac002.  https://academic.oup.com/insilicoplants/article/4/1/diac002/6535671 
 + 
 +**Liu AH, Henke M, Li YM, Zhang Y, Xu DM, Liu XG and Li TL (2022).** Investigation of the impact of supplemental reflective films to improve micro-light climate within tomato plant canopy in solar greenhouses. Frontiers in Plant Science, 13:966596, 1-16, https://doi.org/10.3389/fpls.2022.966596 
 + 
 +**Zhang Y, Henke M, Li YM, Xu DM, Liu AH, Liu XA and Li TL (2022).** Towards the maximization of energy performance of Chinese energy-solar greenhouses: a systematic analysis of common greenhouse shapes. Solar Energy, 236, 320-334, https://doi.org/10.1016/j.solener.2022.03.013 
 + 
 +**Liu AH, Xu DM, Henke M, Zhang Y, Li YM, Liu XA and Li Tl (2022).** Determination of the Optimal Orientation of Chinese Solar Greenhouses Using 3D Light Environment Simulations. Remote Sensing, 14(4), 912, https://doi.org/10.3390/rs14040912 
 + 
 +**Zhang Y, Henke M, Li YM, Xu DM, Liu XA, Liu XA and Li TL (2022).** Analysing the impact of greenhouse planting strategy and plant architecture on tomato plant physiology and estimated dry matter. Frontiers in Plant Science, 13:828252, 1-19, https://doi.org/10.3389/fpls.2022.828252 
 + 
 +==== 2021 ==== 
 + 
 +**Zhu J, Gou F, Begum F, Rossouw G, Henke M, Johnson E, Holzapfel B, Field S and Seleznyova A (2021).** Simulating organ biomass variability and carbohydrate distribution in perennial fruit crops: a comparison between the common assimilate pool and phloem carbohydrate transport models. in silico Plants, 3(2), 1-20, https://doi.org/10.1093/insilicoplants/diab024 
 + 
 +**Zhang, Y., Henke, M., Buck-Sorlin, G. H., Li, Y., Xu, H., Liu, X., & Li, T. (2021).** Estimating canopy leaf physiology of tomato plants grown in a solar greenhouse: Evidence from simulations of light and thermal microclimate using a Functional-Structural Plant Model. Agricultural and Forest Meteorology, 307, 108494.  https://www.sciencedirect.com/science/article/abs/pii/S0168192321001775?via%3Dihub
  
 ==== 2020 ==== ==== 2020 ====
  
-**Kurth W. (2020).** Multiscale graph grammars can generate Cayley graphs of groups and monoids. In: F. Gadducci, T. Kehrer (eds.): Graph Transformation. 13th International Conference, ICGT 2020, June 25-26, Lecture Notes in Computer Science 12150, Springer Nature Switzerland, pp. 307-315.+**Zhang Y, Henke M, Li Y, Yue X, Xu D, Liu X and Li T (2020).** High resolution 3D simulation of light climate and thermal performance of a solar greenhouse model under tomato canopy structure. Renewable Energy}, 160, 730-745, https://doi.org/10.1016/j.renene.2020.06.144 
 + 
 +**Kurth W. (2020).** Multiscale graph grammars can generate Cayley graphs of groups and monoids. In: F. Gadducci, T. Kehrer (eds.): Graph Transformation. 13th International Conference, ICGT 2020, June 25-26, Lecture Notes in Computer Science 12150, Springer Nature Switzerland, pp. 307-315.  https://link.springer.com/chapter/10.1007/978-3-030-51372-6_18
  
 ==== 2019 ==== ==== 2019 ====
Line 26: Line 70:
  
 ==== 2017 ==== ==== 2017 ====
 +
 +**Zhu JQ, Dai ZW, Vivin P, Gambetta GA, Henke M, Peccoux A, Ollat N and Delrot S (2017).** A 3D functional-structural grapevine model that couples the dynamics of water transport with leaf gas exchanges. Annals of Botany, 121(5), 833-848, https://doi.org/10.1093/aob/mcx141
 +
 +**Tian T, Wu LT, Henke M, Ali B, Zhou WJ and Buck-Sorlin GH (2017).** Modeling allometric relationships in leaves of young rapeseed (//Brassica napus// L.) grown at different temperature treatments. Frontiers in Plant Science, 8(313), 1-12, https://doi.org/10.3389/fpls.2017.00313
  
 **Henke M., Kniemeyer O., and W. Kurth (2017).** Realization and extension of the Xfrog approach for plant modelling in the graph-grammar based language XL. Computing and Informatics 36 (1): 33-54. **Henke M., Kniemeyer O., and W. Kurth (2017).** Realization and extension of the Xfrog approach for plant modelling in the graph-grammar based language XL. Computing and Informatics 36 (1): 33-54.
Line 37: Line 85:
  
 **Chi F., Kurth W., and K. Streit (2016).** Generating 3D models from a single 2D digitized photo using GIS and GroIMP. In: Proceedings 2016 IEEE International Conference on Functional-Structural Plant Growth Modeling, Simulation, Visualization and Applications (FSPMA 2016), 7-11 Nov. 2016, Qingdao (China), IEEE Press, Beijing 2016, 22-27. **Chi F., Kurth W., and K. Streit (2016).** Generating 3D models from a single 2D digitized photo using GIS and GroIMP. In: Proceedings 2016 IEEE International Conference on Functional-Structural Plant Growth Modeling, Simulation, Visualization and Applications (FSPMA 2016), 7-11 Nov. 2016, Qingdao (China), IEEE Press, Beijing 2016, 22-27.
 +
 +**Mao LL, Zhang LZ, Evers JB, Henke M, van der Werf W, Liu SD, Zhang SP, Zhao XH, Wang BM and Li ZH (2016).** Identification of plant configurations maximizing radiation capture in relay strip cotton using a functional–structural plant model. Field Crops Research, 187, 1-11, https://doi.org/10.1016/j.fcr.2015.12.005
  
 **Evers J.B., and L. Bastiaans (2016).** Quantifying the effect of crop spatial arrangement on weed suppression using functional-structural plant modelling. Journal of Plant Research 129: 339–351. **Evers J.B., and L. Bastiaans (2016).** Quantifying the effect of crop spatial arrangement on weed suppression using functional-structural plant modelling. Journal of Plant Research 129: 339–351.
Line 201: Line 251:
  
 **Long Q. (2019).** The Integration of Different Functional and Structural Plant Models. Ph.D. thesis, University of Göttingen, Germany. **Long Q. (2019).** The Integration of Different Functional and Structural Plant Models. Ph.D. thesis, University of Göttingen, Germany.
 +
 +==== 2017 ====
 +
 +**Henke M (2017).** Methodical and technical aspects of functional-structural plant modelling, Ph.D. thesis, University of Göttingen, Germany, eDiss - SUB Göttingen, https://dx.doi.org/10.53846/goediss-6490
  
 ==== 2015 ==== ==== 2015 ====
publications/publications.1736616136.txt.gz · Last modified: 2025/01/11 18:22 by wkurth